

www.ijpra.com

Print ISSN: 2249 - 779X

AN OVERVIEW ON HPLC, UPLC AND ITS TROUBLESHOOTING

Nidhi Nk*¹, Neelam I¹, AjithaA¹, Uma Maheswar Rao V¹

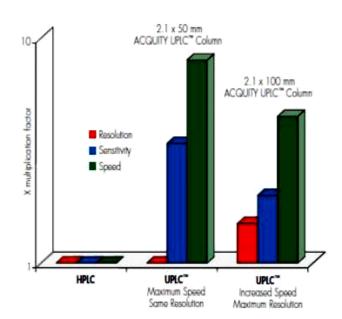
¹Department of Pharmaceutical Analysis & Quality Assurance, CMR College of Pharmacy, JNTU (H) University, Hyderabad, Andhra Pradesh. India.

ABSTRACT

HPLC and UPLC Systems take advantage of technological strides made in particle chemistry performance, system optimization, detector design, and data processing and control. When taken together, these achievements have created a stepfunction improvement in chromatographic performance. Although HPLC method development has been improved by advances in column technology and instrumentation, problems still arise. This helps in systematic means of isolating, identifying, and correcting many typical problems. The important segments of an HPLC and UPLC system are the same, whether you use a modular system or a more sophisticated unit except the column characteristics. Problems affecting overall system performance can arise in each component. Solutions to these problems are presented in easy-to-use tables.

Keywords: Monolithic columns, Baseline drift, Shouldering peaks, Fronting peaks, Inline filter, Radio Interference, etc.

INTRODUCTION


In current trends, liquid chromatography plays a key role in the analysis of multiple API's and excipients especially HPLC and UPLC.

HPLC: High performance liquid chromatography (HPLC) is a well-known technique that has been used in laboratories worldwide from more than last 30 years.

UPLC: UPLC is a derivative of HPLC whose underlying principle is that as column packing particle size decreases, efficiency and resolution increases. If we decrease particle size less than $2 \mu m$, the efficiency shows a significant gain by making use of the smaller particles, the speed of analysis and peak capacity i.e., number of peaks resolved per unit time, can be prolonged to the maximum values and these values are much better than the values achieved earlier by HPLC [1].

Principles of both HPLC and UPLC are the same but • not the performance.

Differences in the speed, sensitivity and resolution are observed.

To improve the UPLC efficiency following measures need to be performed:

1. Elevated temperature range should be employed, which will allow high flow rate of mobile phase by reducing its viscosity and thus it will significantly reduce back pressure.

2. Monolithic columns should be used, which consist of one piece of solid that possesses interconnected skeletons and interconnected flow paths (through pores).

UPLC is a technique which comprises the above mentioned features and stands better than HPLC in many ways, as it shows better chromatographic resolution, performs more sensitive analysis, consumes less time, reduces solvent consumption and has high analysis speed.

• Efficiency is three times greater with $1.7 \mu m$ particles compared to 5 μm particles and two times greater compared to 3.5 μm particles.

• Resolution is 70% higher than with 5 μ m particles and 40% higher than with 3.5 μ m particles.

• High speed is obtained because column length with 1.7 μ m particles can be reduced by a factor of 3 compared to 5 μ m particles for the same efficiency, and flow rate can be three times higher. This means separations can be nine times faster with equal resolution.

• Sensitivity increases because less band spreading occurs during migration through a column with smaller particles.

Contribution of small particles in UPLC

• UPLC required porous particles, which can withstand the high pressure in order to maintain their retention and capacity similar to that of HPLC.

• Here Silica particles possess good mechanical strength but their application was limited by narrow pH application range and generally exhibit tailing during analysis of basic analytes.

• Polymeric columns did not have any pH limitations but found to have low efficiency.

COLUMNS

In 2000, the first generation hybrid chemistry utilizes the classical sol-gel synthesis method to create durable columns that incorporated carbon in the form of methyl groups. These columns exhibit several advantages such as mechanical strength, high efficiency and are operative over an extended pH range. However, they do not possess enough mechanical stability necessitated by UPLC.

Consequently, the second generation bridged ethane hybrid (BEH) technology was developed. This technology increases the mechanical stability of 1.7 μ m particles by bridging the methyl groups in the silica matrix lead to the production of the columns which can withstand high pressure and pH [2].

BEH TECHNOLOGY

In this HPT enabled XTerra columns are used

with the properties of inorganic (silica) and organic (polymeric) packings are combined to produce a material that has superior mechanical strength, efficiency, high PH stability and peak shape for bases.

BEH Technology is used for detection of additional drug metabolites, for superior separation and improved spectral quality.

Examples: BEH C18, BEH C8, BEH SHIELDED RP18, BEH PHENYL, BEH AMIDE COLUMNSBEH 130, BEH 300.BEH123, BEH200, BEH450 SEC COLUMNS, BEH GLYCANCOLUMN.

HSS TECHNOLOGY

In HSS technology a mechanically tolerant, silica based material was designed to withstand UPLC pressures i.e., high strength silica particle technology

Examples: HSS T3, HSS C18, HSS C18 SB, HSS PFP, HSS CYNO COLUMNS.

CSH TECHNOLOGY

Charge Surface Hybrid (CSH) Technology is the latest advancement in hybrid materials that utilizes a controlled, low-level surface charge to provide enhanced selectivity.

Examples: CSH C18, CSH PHENYL-HEXYL, CSH FLOURO-PHENYL COLUMNS.

PUMPS: Pumps in conventional HPLC systems reach a pressure of maximum 400 bars. Pumps in UHPLC systems can reach pressures of 1000 bars and more.

DETECTOR

- TUV (Tunable Ultraviolet) detector
- PDA (Photo Diode Array) detector
- ELS (Evaporative Light Scattering) detector
- FLR (Fluorescence) detector

INTRODUCTION OF HPLC AND UPLC TROUBLE SHOOTING

Although Chromatographic method development has been improved by advances in column technology and instrumentation, problems still arise. This helps in systematic means of isolating, identifying, and correcting many typical problems. The important segments of an HPLC and UPLC system are the same, whether you use a modular system or a more sophisticated unit except the column characteristics. Problems affecting overall system performance can arise in each component. Solutions to these problems are presented in easy-to-use tables [3].

Any troubleshooting strategy in liquid chromatography involves five steps

- 1. Identification of the problem
- 2. Awareness of the cause(s) of the problem
- 3. Isolation of the exact cause of the problem
- 4. Rectifying the problem if able

5. Returning the unit to routine use OR referring the problem to your maintenance manager.

Solving the problems

1. Gather the facts – not theories.

2. Check the simplest things first – it's easier.

3. Compare the performance obtained to the expected performance.

4. List possible causes.

5. Work through the possible causes in a step-by-step manner checking the outcome from any changes made.

6. As a last resort – get help from elsewhere, for example your instrument supplier help desk or your local technical support department.

HPLC AND UPLC TROUBLESHOOTING PARAMETERS

There are many areas in a HPLC instrument that can give rise to system and chromatographic problems which include

- Visual Inspection
- Pressure
- Baseline Irregularities
- Changes in Chromatography
- Changes in retention times
- Qualitative Results
- Quantitative Results

VISUAL INSPECTION

When a problem rises, it is advisable to perform a quick visual check of the instrument and column. This will pick up leaks, loose or disconnected tubing, breakages to the column, changes in instrument settings etc. These problems are easy to rectify and will save time [4].

PRESSURE

A) **High Pressure**: The most common causes of high pressure are blocked tubing around the injector and column inlet.

CAUSE	CORRECTIVE ACTION	
change in ambient	Stabilize the operating	
temperature	environment temperature.	
If the eluent is viscous	Calculate/check the	
	viscosity. Viscous solvents	
	do produce higher system	
	pressures.	
	If possible, dilute or	
	change to a less viscous	
	solvent mix.	
Loosen detector waste	Replace blocked tubing as	
outlet fitting.	per the detector manual.	
Loosen detector inlet	Flow cell fluid path	
fitting.	blockage refers to the	
	detector manual for	
	cleaning instructions.	

Loosen column outlet	Blocked outlet tubing.
fitting.	Replace.
Loosen fitting at guard or	Blocked guard or filter.
in-line filter.	Replace the disposable
	unit
Loosen injector outlet	Injector or connecting
fitting.	tubing blocked. Unblock
	as per injector manual
	instructions. Check that
	the vials are not coring
	and that samples are
	particulate free/soluble.
Loosen pump outlet	Outlet connecting tubing
fittings.	blocked. Replace tubing as
	per pump operating
	manual. Verify solvent
	miscibility.
Pump problem	Contact your maintenance
	provider

B) Low Pressure: The most common causes of no/low pressure are the solvent inlet lines not being immersed in solvent, no solvent in the reservoir and leaks.

solvent, no solvent in the reservoir and reaks.			
CAUSE	CORRECTIVE ACTION		
1. If the pump fuse is not	Replace fuse and re-test		
in working condition.			
4. If the low pressure cut-	Reset the low pressure cut-		
off higher than the	off to a value below the		
operating pressure?	operating pressure		
Does solvent flow out of	In-line filter blocked.		
the purge valve	Clean as per the pump		
when opened?	manual instructions		
If air visible in the solvent	Remove the air – check for		
lines?	loose connections		
Are there any leaks?	Check for pools of liquid,		
	buffer crystals Go to next		
	question and loose		
	connections. Clean up and		
	stop leaks where necessary		

C) Fluctuating pressure

e) i lactaating pressure	
CAUSE	CORRECTIVE ACTION
Improper functioning of	Set the flow to zero. Is the
pressure transducer	pressure Stable? Adjust
functioning.	the transducer.
performing a gradient	If pressure changes follow
analysis?	the gradient, then this may
	be normal, depending on
	the individual solvent
	viscosities
Using Solvents of volatile	Ensure that the operating
nature?	temperature is suitable for
	the particular solvent used.
	Degas thoroughly
Pump problem	Contact your maintenance
	provider

BASELINE DRIFT

Baseline irregularities can be non-cyclic (erratic) or cyclic (follow a pattern). They can originate from electrical interferences, detector faults, solvent impurities, column contamination etc.

To isolate the source of a baseline irregularity, it is important to determine whether the problem lies with the fluid path, detector or electrical connections.

A) NON CYCLIC NOISE: (Fluid path problems)

The most common cause of non-cyclic baseline noise related problems is air in the system. To overcome this, all solvents should be thoroughly degassed prior to use, all lines should be purged with solvent and the pump should be thoroughly primed.

CAUSE	CORRECTIVE ACTION
Air Bubble Trapped in Detector Flow Cell Image: Contract of the second se	To remove the air bubble, either purge the detector flow cell or apply a slight pressure to the detector waste outlet. Degass the mobile phase thoroughly. To stop air bubbles forming in the flow cell, attach a 30 to 90cm length of 0.23 mm ID/1.58 mm OD tubing to the detector water outlet. The tubing acts as a flow restrictor,
	increasing backpressure in the cell. When adding the tubing, please be aware of the backpressure limits of the flow cell
Column Contamination	To determine whether the column is contaminated, replace it with a new column or a column where the performance is known. Flush the column with mobile phase and monitor the baseline. A baseline free from the previous noise indicates that the original column was contaminated.
System Not Equilibrated	Allow the column, detector etc sufficient time to stabilize. If performing gradient analysis, allow sufficient time between analyses for the system to re-equilibrate.
Contaminated Mobile phase	Do not use mobile phase that is contaminated or thought to be contaminated. Ensure that no traces of detergent remain in the vessel, as this will cause spurious peaks in the baseline.
Guard/In- LineFilter Contamination	Guard cartridges and in-line filters are designed to be disposable. We do not recommend attempting to clean up these items as the costs

involved	in time	and m	aterials	out-
weights	the	cost	of	part
replacem	ent.			

B) Non Cyclic Noise: (Detector electronics problems)

The most common cause of problems related to electronic baseline noise is the detector. Usually, if the detector is allowed insufficient time to equilibrate before an injection is performed, then the resultant chromatogram will contain spurious peaks and there will also be some evidence of baseline drift [5-6].

CAUSE	CORRECTIVE ACTION
Detector not	After turning the detector on, allow
stable	it sufficient time to stabilize. The
	baseline will be stable once the
	detector is stabilized. Different
	detectors and conditions will
	require different stabilization
	times. Better to refer detector
	manual
Detector lamp	Check that the lamp energy and
malfunction	reference energy are within
	specification limits for normal
O antennia (1	detector operation.
Contaminated	Flush the system with water,
Detector flow cell	followed by methanol, then water to remove any excess buffers.
	The detector flow cell can also be
	cleaned with a 50/50 v/v mixture
	of THF/water, then 100% THF if
	the system is used in normal phase.
Cables	Check that all cables are securely
	seated in their respective terminals.
	Ensure that all output switches
	have the correct setting are in the
	correct position. All cables should
	be well maintained and grounded
	where necessary.
Radio Interferance	The detector should be isolated
	from all sources of radio
	interference or cycling equipment,
	interference or cycling equipment, for example, large electric motors.
	interference or cycling equipment, for example, large electric motors. The detector should be adequately
	interference or cycling equipment, for example, large electric motors. The detector should be adequately grounded. If necessary, move the
	interference or cycling equipment, for example, large electric motors. The detector should be adequately grounded. If necessary, move the detector away from the source of
	interference or cycling equipment, for example, large electric motors. The detector should be adequately grounded. If necessary, move the
Gain/Sensitivity	interference or cycling equipment, for example, large electric motors. The detector should be adequately grounded. If necessary, move the detector away from the source of interference or position it within a

CYCLIC NOISE

The most common cause of cyclic baseline noise is the detector. Usually, if the detector is allowed insufficient time to equilibrate before an injection is performed, then the resultant chromatogram will contain spurious peaks and there will also be some evidence of baseline drift.

CAUSE	CORRECTIVE ACTION
Sort Term	Refer to the previous table.
Cycling	in the provides more.
Equipment	
Radio	
Interference	
Baseline Drift –	DRIFTNOISE(irregular)
Unstable detector	NOISE(regular)
Baseline Drift -	
Ambient	
Temperature	
Change	
Baseline Drift –	
contaminated	
detector flow cell	
Baseline Drift-	
Dirty Reference	
electrode	
Baseline Drift –	
Scratched	
contaminated	
electrode	
Noise spikes -	
detector lamp	
malfunction	
Ambient	Stabilize the air temperature around
temperature	the instrument and allow the system
fluctuations	to return to equilibrium. If this is
	not possible, relocate the instrument
	to a laboratory position where the
	detector is thermally stable and/or
	avoid
	placing the instrument in direct sunlight.
Long Term	The heater cycles on and off to
Detector	maintain the detector temperature.
Temperature	Change the regularity of the on/off
Problems.	frequency to avoid baseline noise.

CHROMATIC IRREGULARITIES

The most common changes in chromatographic response are related to the shape and separation of peaks, their elution times and changes in established performance. There are two stages to troubleshooting unacceptable chromatography. First, the evaluation of what you have, chromatographically speaking and secondly, isolation of the source of the problem [7].

Abnormal Peak Shapes

Abnormal peak shape encompasses a range of possible peak shape problems.

- No peaks
- Fronting or tailing peaks
- Smaller than expected peaks

- Double peaks/shouldering peaks
- Broad peaks early eluting analytes or all analytes
- Negative peaks

CAUSE	CORRECTIVE ACTION
Column problem	Typically, incorrect or missing
	column. Check that there is a column
	in the system, that it is the correct
	dimension and that it is packed with
	the correct media for the application.
Detector	Ensure that the detector is set to the
Problem	correct wavelength and that
TIODICIII	sensitivity and auto zeros are also
	correctly set. Zero the detector
	baseline if necessary. Check all
	power cables and connections
	between the detector and data-
	handling devices. Ensure that all
	output signal switches are in the
	correct position.
Fluid Path	
Problem	Typically, no flow or very low flow. Ensure that there is power to the
110010111	pump and that it is switched on.
	Check that solvent comes out of the
	detector waste line when the pump is
	set running. Check that the solvent
	reservoirs contain solvent and that the
	solvent inlets are at a suitable height
	to draw any liquid present. Also
	check that the fluid inlet filters and
	lines are not blocked. If no solvent
	flow occurs, refer to the pump
	maintenance manual or contact your
	maintenance provider.
Injector Problem	No vial: Fill auto sampler position
	with a vial.
	Empty vial: Fill the vial with sample.
	Over full vial: Replace with a vial
	where there is an air gap between the
	top of the fluid and vial cap.
	Wrong vial: Check that the correct
	sample was injected.
	Insufficient sample: Inject a more
	concentrated sample solution or a
	larger volume of the same sample
	solution.
	Incorrect injection volume: Inject the
	correct volume of sample.
	Needle blocked: Remove the injector
	needle from its support, as per the
	auto sampler maintenance manual
	and either clean or replace it.
	The blockage may be due to the vial septa degrading or coring. Ideally
	replace all vial septa/caps with a non-
	coring variety. Other sources of
	coming variety. Other sources of

	hlashaan include newincloses in the
	blockage include particulates in the
	sample. Ensure that all samples are
	filtered prior to injection.
Incorrect	Prepare new solvents, prime all lines
solvent/sample	and the pump and allow the system to
	reach equilibrium. Make sure that the
	sample injected is the correct one,
	that it is of the correct strength and
	that it has not degraded. Replace
	where possible. If sample preparation
	techniques involved an extraction or
	similar, ensure that the correct
	sample and solvents were used.
	
	Where possible, repeat the sample
	preparation and check that all
	reagents/extraction equipment are
	correct and within their shelf lives.
	Note: Precipitation of the sample
	because of incompatibility with
	solvents will also result in no peaks
	being detected. There is often a rise
	in system backpressure
	accompanying this problem
Column voiding	Using a standard mixture, solvent and
e	analysis conditions, as close to those
	used to generate your column's test
	certificate as possible, calculate the
	columns efficiency (N). If N is
	markedly lower than is quoted on the
	manufacturers certificate of analysis,
	try cleaning the column using the
	procedures above mentioned. Repeat
	the efficiency calculation. If there is
	no increase in efficiency, replace the
	degraded column with a new one.
	You may wish to contact your
	column supplier if the degraded
	column is relatively new to discuss
	whether it was a handling error that
	caused the degradation
Injection	Dissolve the sample in mobile phase,
Disrupting	use a weaker diluent or make a
Equilibrium	smaller injection
Sample too	Dilute the sample or decrease the rate
viscous	at which the syringe draws the
	sample.
Vial problem	Check that the vial contained enough
viai problem	
	of the correct sample to perform the
	injection – if not, replace with a fresh
	one. Make sure that the vial seats
	correctly in the autosampler and that
	the needle is not obstructed when
	performing an injection.
Guard column	Remove the defective guard and
voiding	replace with a new one. Allow the
	system to reach equilibration and

	repeat the sample injection. If the problem persists, remove the guard and holder and perform an injection. If the problem remains, it is not related to the guard. If the problem disappears, check the connections between the guard unit and the column. Ensure that the connector adds zero dead-volume to the system and that the guard cartridges fit snugly into the holder. Ideally, use an integral guard.
Blockage/ partial	Check the guard, in-line filter,
blockage before	column inlet and all associated tubing
the column	for blockages. Replace any blocked
	tubing, filters or guard units. If the
	column inlet frit has been blocked,
	gently back-flush the column with a
	wash solvent at very low flow rate
	(preferably over night for best effect).
	Re-invert the column and equilibrate
	with test solvent. If this procedure
	has not removed the blockage, please
	contact your column supplier for
	further technical advice.
Contamination in	Flush injector between analyses (a
injection or column	good routine practice). If necessary,
column	run strong solvent through column to remove late eluters. Include final
	wash step in gradient analyses, to
	remove strongly retained compounds.
Late eluting peak	
(usually broad)	2. a. Check sample preparation.b. Include (step) gradient to quickly
present in	elute component
sample.	

RETENTION TIME CHANGES FROM INJECTION TO INJECTION

The most common cause of peak retention time drift is an un-equilibrated system. The detector and fluid system must be stable prior to starting an analysis. Temperature changes during the analysis are another major cause of peak drift [8-10].

1 L	1
CAUSE	CORRECTIVE ACTION
System not equilibrated	Allow the column, detector etc. sufficient time to stabilize. If performing gradient analysis, allow sufficient time between analyses for the system to re- equilibrate. The first time ion pair reagents are used with a column, allow sufficient time and volume of solvent to adequately equilibrate the column.
Insufficient	A suitable period of time for

equilibration-	equilibration must be allowed
gradient analysis	between gradient analyses. This
	allows the T0 mobile phase
	composition to be pumping
	through the column as the
	injection occurs. Insufficient
	equilibrium time results in erratic
	retention times.
Solvent bleeding	Check the miscibility of the
problems	solvents – if their miscibility is
-	poor, consider changing one or all
	to give a miscible mix. If the
	solvent is mixed manually, ensure
	that it is filtered and thoroughly
	degassed before use. The solvent
	line and pump should be
	thoroughly primed with this
	solvent to remove all traces of
	previous solvents and air. The
	column should have a minimum
	of 10 column volumes of solvent
	passed through it to allow
	equilibration. Finally, a series of
	standard injections should be
	performed to ensure that the
	system is performing
	reproducibly.

CONTINUALLY INCREASING OR DECRESING RETENTION TIMES

The most common cause of peak retention time drift in one direction is poorly prepared or mixed solvents or a system leak. If you are confident that the solvents were prepared correctly, then it is very important that you determine whether they are being mixed correctly (mixing cell problems). Where solvents are mixed manually prior to pumping, ensure that the solvent flow rate is correct and constant [11-13].

CAUSE	CORRECTIVE ACTION
Column degradation	Follow Fronting treatment.
Flow rate changes	Ensure that the flow rate delivered is the same as that entered into the pump software. Also, ensure that the flow rate being used is correct for the application.
Solvent preparation	Ensure that all solvents are freshly prepared and free from microbial growth. Filter and degas thoroughly prior to use. Discard old solvents and thoroughly wash all dirty reservoirs prior to re-use. Prime the pump and solvent lines with freshly prepared solvents and allow the column/system to

	equilibrate.
Solvent delivery	Check the solvent lines and
system blockage	inlet filters for blockages. Refer
	to the pump maintenance
	manual for
	cleaning/replacement of
	blocked or dirty parts.
System leaks	Check all fittings and unions
	for leaks. Tighten any loose
	fittings, but do not be tempted
	to over tighten as this may
	damage the fitting's threads and
	cause leaks.
	Where leaks occur between
	tightened fittings, replace the
	fitting and ferrule since they
	may be damager or misaligned.

QUALITATIVE RESULTS

Qualitative assays do not measure exact quantities of an analyte in solution. Therefore, problems associated with these assays usually fall into one of two categories; a) missing or extra peaks and b) peak mis-identification.

The following tables will assist in tracing errors in qualitative methods.

A) Missing Peaks

Single or multiple missing peaks are usually due to the wrong sample being injected or the sample degrading. Equally likely though is a loss of resolution due to column/ solvent inconsistencies [13].

CAUSE	CORRECTIVE ACTION
Sample	Perform one injection of a
degradation	standard. If all the peaks are
	present and correct, the sample has
	degraded. Re-prepare the sample
	and re-inject.
Resolution lost	Replace the column with one
	where the performance is known
	and re-inject the sample. If the
	missing peak(s) re-appear, then the
	efficiency of your original column
	may be lower than that of the
	replacement column. Check the
	efficiency of the original column
	using a test mix and conditions
	similar to those used by the column
	manufacturer to test efficiency
	when the column was new. For
	columns that have been in use for
	an extended period of time,
	perform a column clean up. Repeat
	the efficiency test to determine
	whether this has improved column
	performance. You may wish to
	contact your column supplier if the

	low efficiency column is relatively
	new to discuss whether it was a
	handling error that caused the
	problem.
Solvent flow	Verify that the analysis uses the
programme	correct proportions of solvents and
inconsistencies	that the correct gradient or isocratic
	path is being followed. Check that
	the solvent flow rate is accurate
	from all lines and that the correct
	flow rate is entered into the pump
	software. If a gradient is used,
	check that the time between
	analyses is sufficient to allow the
	system to re-equilibrate.
Column incorrect	Ensure that the correct media and
	dimension of column is used. Also
	check that the correct media
	particle size is used as this will
	have an impact on the resolution of
	closely eluting peaks $-a 3 \mu m$
	media will provide higher column
	efficiency than a 5 μ m media.
	ernelene, mai a 5 µm media.

B) Extra Peaks

Extra peaks in chromatograms are more often than not due to contamination or degradation of the sample, mobile phase or column. To check if the extra peak(s) is/are in the sample alone, perform a blank injection of sample solvent. The peak(s) should be absent Peak misidentification occurs most often in degradation samples or those in which related substance levels are being measured. This is because the software is "calibrated" using a standard mixture with specific concentrations of each impurity. Most "real-life" samples contain impurities at very low levels so the retention time of their peaks will be slightly different to those generated by the standard mix. Identification windows should be set widely enough to take into account this time variation with respect to concentration.

C) Peaks Misidentified

Peak mis-identification occurs most often in degradation samples or those in which related substance levels are being measured. This is because the software is "calibrated" using a standard mixture with specific concentrations of each impurity. Most "real-life" samples contain impurities at very low levels so the retention time of their peaks will be slightly different to those generated by the standard mix. Identification windows should be set widely enough to take into account this time variation with respect to concentration [12].

Degraded /	Refer below the Precision table
contaminated sample	

CAUSE	CORRECTIVE ACTION
Data handling	If a data-handling system identifies
inaccuracies	your peaks then ensure that all the
	peak retention time variables such
	as peak windows, threshold,
	integration and retention times are
	correctly entered into sample and
	calibration tables etc. Make any
	necessary changes and perform a
	standard injection to ensure that
	peaks are now correctly identified.
	Refer to the data handling
	operators manual for further
	details.
Peak retention time	Refer the changed retention time
variation	flow chart

QUANTITATIVE RESULTS

Quantitative assays measure exact quantities of an analyte in solution. Therefore, problems associated with these assays usually fall into one of two categories;

a) Loss of precision and b) Loss of accuracy.

The most common mistake made is to assume that accuracy and precision are the same.

A) Loss Of Accuracy

Loss of Accuracy is mainly due to sample.

CAUSE	CORRECTIVE ACTION
Incorrect sample/ sample preparation	Check that the correct sample has been prepared and that the preparation has produced a solution that is of the correct strength. At the same time, check that any internal/external standards have been prepared correctly and are of the correct strength.
Solvent evaporation	Samples prepared in volatile solvent, such as chloroform, DCM etc. are affected by changes in ambient temperature. They will evaporate more quickly in warmer temperatures, producing more concentrated sample solutions. Ensure that the ambient temperature around the sample remains constant and that the vial cap is sufficiently tight to stop evaporation, but not tight enough to create a vacuum when injections are performed.
Peak Integration Error	Refer below the Precision table

B) Loss Of Precision

Loss of precision is most often caused by an injector error, by a sample that is mixed poorly, or a sample that is degrading [13].

CAUSE	CORRECTIVE
	ACTION
Peak integration error	Ensure that the correct
	values of peak lift-off,
	touchdown, threshold etc.
	are entered into the data-
	handling device. Make
	any necessary changes.
Degraded / contaminated	Perform one injection of a
sample	standard. If all the peaks
	are present and correct,
	the sample has been
	contaminated or has
	degraded. Re prepares the
	sample and re-inject.
Injection error-external	Manual Injection
standard	Using a fixed-loop
	system: load three times
	the loop volume before
	making the injection.
	Using a partial fill loop:
	Inject less than 50% of
	the sample loop volume.

	Syringe and injection
	valve: Ensure that the
	injection technique is as
	constant as possible.
	Automatic Injection
	Check to make sure that
	air is not being injected,
	that the sample vial
	contains enough solvent
	to perform multiple
	injections from it and that
	there are no leaks in the
	system. Ensure that the
	sample loop is the correct
	size and that the injection
	system is undamaged and
	clean.
	Between injections,
	ensure that the injector
	purge is adequate to
	eliminate carry-over from
	previous injections.
Detector response	Refer to the detector
Inaccuracies	operator's manual for
	instrument specific
	information on
	troubleshooting and
	corrective action.

CONCLUSION

New chemistry and instrumentation technology can provide more information to fulfill the promise of higher speed, resolution and sensitivity in these techniques.

REFERENCES

- 1. Armelle V, Mai. Good Laboratory Practice for HPLC. 2007, 17.
- 2. Waters. HPLC troubleshooting guide, 1-48.
- 3. HPLC troubleshooting Bulletin 826E by sigma- Aldrich.
- 4. Tips and tricks of HPLC trouble shooting by Agilent Technologies, Inc.
- 5. Tips and tricks of UPLC trouble shooting by waters
- 6. Ashok K. UPLC: A preeminent technique inpharmaceutical analysis. *Actapoloniaepharmaceutica– drug research*, 69(30), 2012, 371-380.
- 7. Preetivinodgaikwad. Ultra performance liquid chromatography: A recent novel development in HPLC. *Pharmacieglobale international journal of comprehensive pharmacy*, 01, 2012, 1-3.
- 8. Michael ES. HPLC to UPLC method migration an over view of key considerations and available tools. Waters cooperation in press, 2007, 1-53.
- 9. Michael ES. Ultra performance liquid chromatography UPLC: an introduction. *Separation science redefined*, 1, 2005, 8-14.
- 10. Srivastava B. Ultra performance liquid chromatography (UPLC): A chromatography technique. *International journal of pharmaceutical quality assurance*, 2(1), 2010, 19-25.
- 11. Michael ES. UPLC: An introduction and review. *Journal of liquid chromatography & related technologies*, 28, 2005, 1253–1263.
- 12. Roge AB. Novel achievement of HPLC: UPLC. International journal of pharmtech research, 3(3), 2011, 1423-1429.
- 13. Joseph S. UPLC: Ultra performance liquid chromatography. Journal of AOAC international, 2005, 10.

Extraction of the above data as revealed that HPLC and UPLC will prove an essential and crucial tool for analyzing the pharmaceutical analysis.